1.0 | Project Summary Information

1.1 Project Name (35 letters max) Springville, Sharp-Tintic Railroad Connection

1.2 Project Type Preliminary Work

1.3 Limits (descriptions should be identifiable. i.e: intersections, place names, landmarks, 35 characters max) Sharp RR / 1600 S in Springville to Tintic RR / Williams Ln

1.4 Project Description (summary of project) This project will construct approximately 3,900 linear feet of UTA owned railroad track for the future FrontRunner. This will allow for the bypass of current UPRR routes and abandon approximately 12,500 feet of the Tintic Railroad line through residential sections of Springville, eliminating the existing need for 6 crossings in the area.

1.5 Sponsor (jurisdiction, agency name) Springville City

1.6 Project Manager Brad Stapley
 Office Phone 801-489-2711 Cell Phone 801-420-1119
 Fax 801-489-2709 Email bstapley@springville.org

1.7 Total Project Cost (includes local match and additional funds) $5,653,000
 PE Cost $286,000
 ROW Cost $790,000
 Construction Cost $3,839,000

 Funds already available to project (less local match) Pledged funds consist of the following: UDOT RR Safety $800,000, UTA to pay local match, and UPRR $100,000 for crossing closures and a possible additional donation of materials and equipment that has not yet been officially pledged. Additional funds are also expected from Springville City ($100,000-$200,000) and Spanish Fork City ($100,000-$200,000) but cannot yet be pledged because they must be approved first in the annual budget. Additional funding received will result in returned MPO funds for the use on other MPO projects.

 MPO Federal Funds Request (includes 6.77% local match) $4,753,000

1.8 Local/Regional Significance
Is project in local general plan? No
Is project in MPO transportation plan? Yes
Is project on a corridor on the Utah State Functional Class Map? No not a highway project

1.9 Air Quality Benefit (summarize CM/AQ Report, NA for non-CM/AQ eligible projects)
 The project will have the potential of introducing 4,200 additional riders per day to the FrontRunner. This would decrease the amount of single occupancy vehicles on the road by the same.

1.10 Leadership Approval (local=mayor, manager, commissioner; state=dept. head). Acknowledges knowledge, support and approval to submit project to Mountainland.

[Signature] for Wilford Chase Manager 3/24/16

Position
Date
2.0 | Project Scope

Enter NA for answers to questions not applicable to your project.

2.1 Describe purpose and need of project.
The purpose of this project is to construct a section of the future FrontRunner alignment. The new alignment will allow current UPRR routes to bypass approximately 12,500 LF of the Tintic line through a residential area and allowing it to be abandoned. The project will eliminate 6 existing/planned crossings. Incomplete streets that were inhibited by costs of crossings can be completed, creating better travel routes. It will also provide a safe walking route for children to a local elementary school and reduce bus routes. The abandoned UTA railroad corridor will be designated for future trail use.

2.2 Describe existing service/conditions
Currently the FrontRunner stops at Provo and does not continue south. This connection is one of the last sections that UTA does not have to get the FrontRunner to southern Utah County.

The Tintic railroad line bisects a growing residential area in Springville. It currently only serves one UPRR customer further down the line, typically only making two trips per week. Future customers are possible in Spanish Fork and beyond, but there is no potential for new customers in Springville because it runs through residential zones. The existing customer and future customers in Spanish Fork could still be served by the Project.

There are currently several railroad crossings in a small area with the need to install more crossings. 950 W has been constructed up to the railroad on each side, but has not yet made a crossing. Students must be bussed around through another crossing or walk across the tracks to get to school.

The tracks through the existing section are old. For safety purposes, trains do not run faster than 10 mph. The Project will shorten the distance trains need to travel, allow them to travel at higher speeds, eliminate the unnecessary detour through Springville's residential zones, and eliminate several crossings.

2.3 Highway Project Information

<table>
<thead>
<tr>
<th>SR# or FA#</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning Mile Post</td>
<td>NA</td>
</tr>
<tr>
<td>End Mile Post</td>
<td>NA</td>
</tr>
<tr>
<td>Length of project</td>
<td>NA</td>
</tr>
</tbody>
</table>
Existing number of Travel Lanes
NA

Width of facility.
50 FT

Facility surface type.
NA

2.4 Transit / Pedestrian Facility Project Information

Route#
NA

Length of project
Approximately 3,900 LF

What is the expected use of the facility or program?
The new tracks will make an interconnection from the Sharp Railroad line to the Tintic Railroad Line for the use of the FrontRunner light rail transit. Until the FrontRunner is active, the new track will continue to be used for existing and future UPRR customers. The new route will allow approximately 12,500 LF of existing railroad tracks to be abandoned. Eventually, this interconnection will be incorporated into FrontRunner when UTA expands its light rail services further south. UTA has consented the use of the abandoned railroad section for a trail system.

What services are provided in the operating of this project?
Railroad services with future light rail services.

2.5 Describe any equipment to be purchased (buses, ITS, etc.).
Railroad Switches

2.6 Describe how project is consistent with local plans.
This project will help expedite the highly anticipated FrontRunner service to south Utah County. Also by eliminating the Tintic Railroad line running through Springville, development costs are reduced where crossings are not required, the community is not divided by a railroad corridor, safety is increased, and noise is reduced through residential areas. Specifically, a major railroad crossing likely involving an overpass will be eliminated when 1600 S is expanded in the future, 950 W can be connected allowing a direct route to a new elementary school, and the connectivity between Springville and Spanish Fork through the planned 1200 W corridor will be improved.

2.7 Describe how project is consistent with Utah County ITS plan.
The overall FrontRunner project will provide a corridor for communication systems that will assist in the traffic operations for crossings and others needs.
2.8 If phased or segmented, describe how the phase has logical termini and what will future phases consist of.
Future phases of this project would consist of the expansion of UTA FrontRunner to south Utah County, which currently terminates in south Provo, and the development of the abandoned corridor into a trail system. Neither the trail nor the FrontRunner projects could be completed without this connection first being made.

2.9 Is project being coordinated with or constructed with a larger project?
The project is a precursor to and will be coordinated with other projects (FrontRunner) but will be completed and funded separately.

2.10 Describe how project will alleviate congestion on this or other facilities.
With the future FrontRunner transit, more commuters will use the light rail transit instead of driving. This will reduce the number of vehicles on the highways and other facilities. In addition to eliminating several railroad crossings, the Project will open up the area for better connectivity and redundancy through residential development. More roads can be completed across the railroad corridor that will eliminate longer drive times to go around. This will provide more routes for transportation and alleviate congestion in the area. Better routes will be provided for the school buses from the bus depot and eliminate some bus routes due to a safe walking route for children in the area to school.

2.11 Describe any traffic improvements. (i.e lanes, signal coordination, ITS, turn lanes, bus pullouts, etc.)
The project eliminates 6 railroad crossings.

2.12 Describe any safety improvements for vehicular and pedestrian traffic. (i.e. raised median, channelization of turn movements, barriers, parkway strips, etc.)
The project provides a separate corridor for the light rail transit and other trains to travel independently of the cars. This project will also eliminate many current and future railroad/street intersections, creating safer routes for all modes of transportation. Children will be able to walk to school without the need to walk across the railroad track.

2.13 How are complete streets addressed with this project? (plan for pedestrians, bikes, transit, trails, ITS)
The project will complete a section of future FrontRunner alignment and open up more routes across the abandoned railroad corridor. Streets stubbed at the tracks will later be completed with sidewalks and eliminate school bus routes.

2.14 Describe traffic control changes at intersections. (include info to warrant changes)
The project eliminates train and vehicular/pedestrian intersections and eliminates need for signaled crossings.

2.15 What right-of-way is already secured?
No right-of-way has been secured.
2.16 What additional right-of-way is needed?
Approximately 175,500 SF

2.17 Describe utility work to be performed and indicate who will do the work.
Raising the power lines near the Williams Lane crossing might be required.

2.18 What type of environmental work will most likely be needed?
Environmental Accessment

2.19 Facility Design

<table>
<thead>
<tr>
<th></th>
<th>Current Conditions</th>
<th>Design Year Click here to enter</th>
<th>Design Year w/o Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Traffic</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Level of Service</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Functional Class</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Design Speed</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>*Accident Rate</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Transit Ridership</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ped/Trail Usage</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Park and Ride Usage</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
3.0 | Project Ranking

The following categories will be used by MPO staff to score each project. The points associated with each category show what total points MPO staff can give. MPO staff’s recommendations will be made available to the MPO TAC Committee for their use in making final project selection recommendations. MPO staff ranking is a tool to aid the MPO TAC Committee in their final selection. The committee is not required to pick projects solely on MPO staff ranks. Please note, if questions pertinent to the project are not answered, zero points will be given.

3.1 Congestion Relief (25 Points)

Explain if the project...

a) Provides an alternate transportation facility that corrects an identified congested problem?

The future completion of the FrontRunner light rail transit will provide commuters an alternative transportation which will take vehicles off the roads. The project also provides an alternate railroad track for UPRR to use without bisecting a large residential area. This will relieve congestion caused by 6 existing RR crossings that will be able to be abandoned. Future congestion in the area will be mitigated by enhanced flow and connectivity across the abandoned corridor.

b) Reduces congestion by reducing the number of vehicles.

The future completion of the FrontRunner light rail transit will eliminate numerous commuting vehicles from the road. Immediate results include bus route reduction and fewer parents driving their children to school because children will have a safe walking route to the local school across the abandon railroad corridor.

c) Reduces the need for additional highway lanes for peak hour capacity.

The project will open up the north-south connection of 950 West by eliminating the crossing, which will alleviate some traffic from Highway 89 (State St).

d) Increases the efficiency of transportation system through traffic management measures.

Traffic management measures will not be required with the elimination of railroad and street intersections.

e) Adds turning movements to relieve a congested intersection.

NA

f) Design year number of users. Users include the average AADT for highways and users per day for transit, trails, and other projects.

NA

g) 2020 V/C data (computed by MPO staff)

NA

3.2 Mode Choice (25 points)

Explain if the project...
a) Benefits multiple transportation systems (transit and highway, pedestrian and transit). The project benefits all modes of transportation. Transit will benefit by having a critical section of the future FrontRunner completed as well as shorter routes for local transit. Highway/vehicular travel will benefit through the elimination of railroad crossings and greater efficiency and connectivity of the overall road systems. Both biking and walking pedestrians will benefit by the improved safety of crossing the abandoned corridor, more paths and locations to cross the corridor, and the eventual development of the corridor into a trail system.

b) Promotes alternative transportation solution to SOV use.

The future completion of the FrontRunner light rail transit will provide commuters an alternative transportation which will reduce SOV use.

c) Creates or improves linkages between transportation modes.

With completion of the FrontRunner, there will be improved access to transit via other modes. More walking and biking paths will become available across the abandoned corridor. The future trail along the abandoned corridor will include multiple pedestrian linkages to both driving and to transit.

d) Reduces physical, psychological, or economic barriers to carpool, bike, walk, or transit use.

This project will reduce physical and psychological barriers for walking and biking by abandoning railroad tracks, which will allow for the completion of streets and sidewalks and remove the danger of the railroad crossings. By eliminating the need for a crossing at 950 W, school children south of the tracks will be able to safely walk or bike to school, which will also eliminate the requirement for Nebo School District to provide buses for that area. Local transit routes will become more efficient with more connectivity through the area. The FrontRunner completion down to southern Utah County will provide local access to more people, making it more appealing to use the transit from a physical, psychological, and economic standpoint.

e) Provides incentives to carpool, bike, walk, or transit use.

The future FrontRunner will provide quick long distance commuting access to the local areas. Elimination of railroad crossings will make a safe walking route for children to walk to school.

3.3 Environmental Quality (15 points)

Explain if the project...

a) Provides cost effective emission reductions (amount of reduction justifies cost).

The future FrontRunner transit and the removal of six railroad crossings will reduce emissions as there will be less commuting vehicles on the road and no idling during at the abandoned crossings. This reduction in emissions will continue to justify the cost of the project for years to come. Emissions will also be reduced by not having to provide a school bus for school children living south of the tracks.

b) Helps efforts to attain and maintain national air quality standards.
Use of the future FrontRunner and reducing idling time of vehicles by the removal of the railroad crossings will help reduce man made pollution and will help attain the national air quality standards.

- **c)** Minimizes environmental impacts or reduces existing impacts (e.g. air/water/noise pollution).
 Removing vehicles from the road by use of the future FrontRunner and removal of the railroad crossings will reduce vehicular idling time, which will improve air quality. There will also be decreased noise pollution from trains through residential areas where the railroad line is being abandoned.

- **d)** Enhances the natural, cultural, or historic environment.
 The overall FrontRunner project will reduce the number of vehicles on the road, help balance the expansion of streets and highways with the population growth, and help preserve natural and historical areas from over development.

- **e)** Mitigates invasive impacts to existing neighborhoods/commercial areas (minimal relocations).
 The project will remove the invasive impacts of the current railroad track from residential areas and shift the railroad traffic to a commercial area. The new rail will be constructed through undeveloped land which will have very low impact to the local area.

3.4 Safety (20 points)

a) Corrects/improves a verified or potential safety or accident problem.
 The future FrontRunner will remove congestion from the highways, which creates safer roadways in general. The rail corridor will also separate the transit from other roadway systems making travel safer. Railroad crossings, especially in residential areas and near elementary schools, are known safety hazards for commuters, pedestrians, and trains alike. The project will greatly improve safety by eliminating 6 existing crossings in a residential area as well as future crossings that would be needed with future development. Furthermore, emergency responders will be able to cross the corridor without any potential delays caused by the railroad. In addition to avoiding the crossings, trains that currently use the tracks will be able to travel a shorter distance along a safer section of track.

b) Improves information/communications for traffic operations and emergency responders.
 The overall FrontRunner project will provide a corridor for communication systems that will assist in the traffic operations for crossings, other needs, and emergency responders.

c) Reduces severity of crashes.
 The project eliminates the potential to have pedestrian or vehicle incidents involving a train through the impacted area.

d) Enhances safe movement of pedestrian, bicycle traffic.
 The project provides a dedicated corridor for a light rail transit with separated transit from other modes of transportation. It also provides a safe walking route for children to school and allows for the completion of complete streets across the railroad corridor. The future trail along the
abandoned corridor will provide a travel corridor for pedestrians that is separated from vehicular traffic.

e) Provides an intermodal safety improvement (e.g. separation of vehicles-trains, vehicles-pedestrian).

The project provides a dedicated corridor for a light rail transit with separated transit from other modes of transportation. It also provides a safe walking route for children to school and allows for the completion of complete streets across the railroad corridor. The future trail along the abandoned corridor will provide a travel corridor for pedestrians that is separated from vehicular traffic.

3.5 Other Considerations (15 points)

Explain if the project...

a) Effectively distributes funding throughout the MPO area.

The funding provides access for the FrontRunner to reach southern Utah County. Essentially it benefits all cities throughout the valley, allowing future light rail transit access from the north to the south end of the county.

b) Phases project in a manner that the MPO can use limited funds efficiently.

This phase is the minimum amount needed to connect the tracks. In order to allow funding for other projects, future phases including removal of the abandoned tracks and development of the trail system is left for future funding or development opportunities. Abandoning the railroad track will eliminate the need for future crossings.

c) Cost effectiveness is appropriate for the amount of improvement made.

In addition to Springville, the project will provide cost-benefits to UTA, UDOT, Utah County, Nebo School District, and Spanish Fork by the elimination of costs for future railroad crossings, maintenance of the old abandon track, and future commuting access to FrontRunner.

d) Benefits transportation users from adjacent municipalities.

The project provides access for the FrontRunner to reach southern Utah County. Essentially it benefits all cities throughout the valley, allowing future light rail transit access from the north to the south end of the county.

e) Is supported by elected officials.

The project is supported by the Springville City Council, Spanish Fork City Council, and the Nebo School District Superintendent (Rick Nielsen)
4.0 | Air Quality Report

All projects that are eligible for CM/AQ and CM/AQ-PM2.5 funds must complete this report (see CM/AQ Eligibility list at www.mountainland.org/tipselection). These funds are eligible for projects and programs countywide.

4.1 Eligibility

CM/AQ funds can only be used for projects and programs that a direct benefit to air quality can be demonstrated. Highway expansion, such as new single occupancy vehicle lanes, is not eligible. Turn lanes at congested intersections, transit programs, pedestrian and trail projects, signal modernization, ITS, and IM programs are typical eligible CM/AQ projects.

4.2 CM/AQ Program

The purpose of the CM/AQ program is to fund transportation projects or programs that will contribute to attainment or maintenance of the National Ambient Air Quality Standards (NAAQS) in Ozone (O_3), Carbon monoxide (CO), Particulate Matter – 10 microns (PM_{10}), and $PM_{2.5}$ non-attainment and maintenance areas. The city of Provo is a maintenance area for CO and Utah County is a non-attainment area for PM_{10} and $PM_{2.5}$.

4.3 Completing this Report

All projects eligible for CM/AQ funds must complete this report. Completing this report can be quite technical, Susan Hardy, Air Quality Coordinator at Mountainland, can help with filling out this report. Contact her at 801/229-3842 or shardy@mountainland.org

4.4 Quantitative Analyses

A quantitative assessment of how a proposed project or program is expected to reduce emissions is important to assist in selecting the most effective use of this fund. List below all travel benefits directly related to this project. Air quality benefit calculations must utilize Mobile 6. The air quality analysis should include assessing emission reductions of transit, traffic flow improvements, ITS projects and programs, ridesharing, bicycle and pedestrian improvements. Complete at least one of the sections below. If quantitative analyses cannot be done, do a qualitative assessment in 4.3.

a) Vehicle Miles Traveled

Number of Vehicle Miles Traveled reduced (VMT): Click here to enter text.
Average distance of trips reduced: Click here to enter text.
Emission reduction per average weekday: Click here to enter text.

b) Idling Time

Average idling time per vehicle reduced: Click here to enter text.
Number of vehicles with reduced idling time: Click here to enter text.
Emission reduction per average weekday: Click here to enter text.

C) Vehicle Speed

Average change in vehicle speed (speed before and after): NA
Number of vehicles affected: NA
Emission reduction per average workday: NA
4.5 Qualitative Assessment
Although a quantitative analyses of air quality impacts is required whenever possible, some improvements may not lend themselves to rigorous quantitative analysis, because of the projects characteristics or because practical experience is lacking to adequately analyze the project. In these cases, a qualitative assessment based on a reason and logical examination of how the project or program will decrease emissions and contribute to attainment or maintenance of a NAAQS is appropriate.

The project will have the potential of introducing 4,200 additional riders per day to the FrontRunner. This would decreases the amount of single occupancy vehicles on the road by the same.
5.0 | Project Cost Estimate

To develop a project cost estimate, please supply a detailed cost breakdown of your unit costs, inflation, equipment, right-of-way, contingency, etc. To do so, use the Concept Costs Estimate Excel form provided by UDOT (available at www.mountainland.org/tipselection). Non-construction projects such as equipment purchases, operations, administration programs, studies, etc. can use other methods to show their estimated costs. All sheets or methods used should be submitted as part of the Supplemental Information accompanying the Concept Report.

5.1 Cost Summary

Summarize the information from the Costs Estimate Excel form or other method. Enter NA for items that do not apply to the project.

- a) Preliminary Engineering $286,000
- b) Environmental Work $250,000
- c) Construction $3,869,000
- d) UDOT Review (project cost <$500k = $5k, >500K = $10k) $10,000
- e) Construction Engineering $250,000
- f) Subtotal $4,665,000
- g) Inflated Cost Factor (inflate to year of construction) 1.21
- h) Total Project Cost (enter total cost, not funding request) $5,653,000
- i) Additional Funds (less local match) Available to Project $900,000; Additional TBD
- j) MPO Federal Funds Request (includes 6.77% local match) $4,753,000

6.0 | Supplemental Information

Please submit any supporting documentation including maps, diagrams, charts, cost estimates, etc. that will allow MPO and UDOT staff and any Technical Advisory Committee to make an informed decision regarding the proposed project. Keep Supplemental Information submittals to 8 pages total.

6.1 Concept Report Submittal

In order to facilitate the distribution of the Concept Reports and any supplemental information, all Concept Reports with leadership signature, shall be combined with any supplemental information and saved in PDF format as one document. Please note that this might create a large data file that might be too large to emailed. Plan accordingly to submit your report in electronic format (CD, DVD, Flash Drive) by the required due date. Concept Reports are due by Thursday 03/24/2016 at 6pm.

6.2 Contacts, Questions

For help with the Concept Report or questions, please contact:

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
<th>Fax Number</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Allen, AICP</td>
<td>801/229-3813</td>
<td>801/229-3801</td>
<td>ballen@mountainland.org</td>
</tr>
<tr>
<td>Shawn Eliot, AICP</td>
<td>801/229-3841</td>
<td>801/229-3801</td>
<td>seliot@mountainland.org</td>
</tr>
</tbody>
</table>
UTA FrontRunner Track – Tintic Line Abandonment

Abandon 12,500 track feet of Tintic Line

Construct 3,900 track feet UPRR/UTA Spur (Future FrontRunner Track)

Abandon Six (6) RR Crossings
- 700 S 400 W RR Crossing
- 400 W 800 S RR Crossing
- Farm Access Crossing (Public)
- Proposed 950 W Crossing
- 1600 S Crossing @ 1200 W
- Canyon Creek Crossing
Student/School Bus Access to Meadow Brook Elementary

- Elementary School
- Isolated Residential Area
- Bus Depot
Springville FrontRunner Station (Planned)

Railroads
- Existing
- Abandoned
- Proposed Connection

SHARP-TINTIC Railroad Connection
Springville City

0 2500 Feet

Provo FrontRunner Station

PROJECT LOCATION

Springville FrontRunner Station (Planned)
Benefits

- **Safety**: Removes multiple RR crossings, removes RR Track from residential area, provides pedestrian access.
- **Reduce Future Costs**: Saves money by eliminating future crossings and track maintenance.
- **Concept Support**: UTA, MAG, Nebo School District, Spanish Fork PW, UDOT, UPRR.
- **Funding Support**: Potential funding support from UTA, UDOT, Springville City, Utah County, MAG, private development.

Concept Support
- UTA, MAG, Nebo School District, Spanish Fork PW, UDOT, UPRR.

Funding Support
- Potential funding support from UTA, UDOT, Springville City, Utah County, MAG, private development.
Prepared By: J-U-B Engineers
Date: 3/21/2016

Proposed Project Scope:
Construct 4,200 LF future FrontRunner track between the Sharp and Tintic lines, abandon Tintic Spur.

<table>
<thead>
<tr>
<th>Approximate Route Reference Mile Post (BEGIN) = NA (END) = NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Length = 0.795 miles 4,200 ft</td>
</tr>
<tr>
<td>Current FY Year (July-June) = 2016</td>
</tr>
<tr>
<td>Assumed Construction FY Year = 2020</td>
</tr>
<tr>
<td>Construction Items Inflation Factor = 1.21 4 yrs for inflation</td>
</tr>
<tr>
<td>Assumed Yearly Inflation for Engineering Services (PE and CE) (%/yr) = 3.0%</td>
</tr>
<tr>
<td>Assumed Yearly Inflation for Right of Way (%/yr) = 3.0%</td>
</tr>
<tr>
<td>Items not Estimated (% of Construction) = 20.0%</td>
</tr>
<tr>
<td>Preliminary Engineering (% of Construction + Incentives) = 8.0%</td>
</tr>
<tr>
<td>Construction Engineering (% of Construction + Incentives) = 7.0%</td>
</tr>
</tbody>
</table>

Construction Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Information Services</td>
<td>$8,000</td>
<td></td>
</tr>
<tr>
<td>Roadway and Drainage</td>
<td>$2,387,100</td>
<td></td>
</tr>
<tr>
<td>Traffic and Safety</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Environmental Mitigation</td>
<td>$250,000</td>
<td></td>
</tr>
<tr>
<td>ITS</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: $2,645,100
Items not Estimated (20%): $529,020

Construction Subtotal: $3,174,120

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E. Cost</td>
<td>$253,930</td>
<td>8%</td>
</tr>
<tr>
<td>C.E. Cost</td>
<td>$222,188</td>
<td>7%</td>
</tr>
<tr>
<td>Right of Way</td>
<td>$702,000</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>$50,000</td>
<td></td>
</tr>
<tr>
<td>Incentives</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: $702,000

Miscellaneous Subtotal: $0

Cost Estimate (ePM screen 505)

<table>
<thead>
<tr>
<th>Item</th>
<th>2016</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E.</td>
<td>$254,000</td>
<td>$286,000</td>
</tr>
<tr>
<td>Right of Way</td>
<td>$702,000</td>
<td>$790,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$50,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>Construction</td>
<td>$3,174,000</td>
<td>$3,839,000</td>
</tr>
<tr>
<td>C.E.</td>
<td>$222,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Incentives</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>0.75% $24,000</td>
<td>$29,000</td>
</tr>
<tr>
<td>Change Order Contingency</td>
<td>10.00% $320,000</td>
<td>$387,000</td>
</tr>
<tr>
<td>UDOT Oversight</td>
<td>$10,000</td>
<td>$12,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

TOTAL: $4,756,000

Proposed Commission Request

TOTAL: $4,756,000

Project Assumptions/Risks

1. Railroad track construction costs based on UTA contracted pricing, not Union Pacific

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

3/21/2016
Page 1 of 1

Concept Level Est Form
Rev. 7/31/2013