1.0 | Project Summary Information

1.1 Project Name (35 letters max) Springville 1200 West - 1600 S to Canyon Creek Pkwy

1.2 Project Type Road - New Construction

1.3 Limits (descriptions should be identifiable. i.e: intersections, place names, landmarks, 35 characters max) 1600 South (Springville) to Canyon Creek Pkwy, Spanish Fork.

1.4 Project Description (summary of project) 1200 West will be a critical regional north-south corridor through Springville from Spanish Fork to Provo shown on the MPO plan, Phase 1. It will eventually be a 4-lane major arterial with a trail connecting 3 state routes and a proposed major arterial roadway. The first phase of this roadway was selected and funded in the last MPO selection process. This phase will continue a pioneered asphalt section with 11 foot single lanes in each direction with 5 foot shoulders from 1600 South to Canyon Creek Parkway (a pioneering road in Spanish Fork).

1.5 Sponsor (jurisdiction, agency name) Springville City

1.6 Contact Information

Project Manager Brad Stapley
Office Phone 801-489-2780
Cell Phone 801-420-1119
Fax 801-489-2709
Email bstapley@springville.org

1.7 Cost Estimate

Total Project Cost (include matches, pledged funds, etc.) $2,378,000
MPO funding request (include any match) $2,378,000
PE Cost $120,000
ROW Cost $401,000
Construction Cost 1,588,000
Soft Match proposed for project Springville City will be doing the Preliminary and Construction Engineering in-house as the 6.67% match (total $233,000)

1.8 Project Rank (rank this project compared to your other submittals)
 1

1.9 Air Quality Benefit (summarize CM/AQ Report, NA for non-CM/AQ eligible projects)
 Although this project will help improve traffic movement through this area and provide better routes and possible modes of transportation, it does not qualify for air quality benefits.
2.0 | Project Scope
Always enter “NA” rather than leave an answer blank...

2.1 Describe purpose and need of project.
The purpose of this project is to pioneer a north-south corridor, located in between I-15 and Highway 89 (State Street), to interconnect Provo and Spanish Fork through Springville. This project will provide efficient access with shorter time and distance to State Street and I-15, thereby reducing pressure on local and future residential street as the area further develops. This corridor will provide alternate routes in Springville as well as between the surrounding cities. The corridor will also include a trail system when fully completed. The overall project is a Phase 1 project on the MPO Transportation Plan. The proposed pioneered section is a minimal asphalt section that will provide access to the areas, with private development completing the full cross section as development occurs.

2.2 Describe existing service/conditions
With the exception of I-15 on the west, and Highway 89 on the east, there is no existing north-south route that connects Spanish Fork and Provo through Springville. This project is a subsequent phase in accomplishing this goal. The area is mostly undeveloped. Travel within the area or north-south travel to the surrounding cities requires traversing through underdeveloped areas or long circuitous routes.

2.3 Highway Project Information (for non-highway projects go to 2.4)

2.3.1 State Route # or Federal Aid Route #
This is not a state facility so there is no route number.

2.3.2 Beginning Mile Post
Springville, 1600 South

2.3.3 End Mile Post
Spanish Fork, Canyon Creek Parkway

2.3.4 Length of project
Approximately 2,850 linear feet

2.3.5 Existing and proposed number of Travel Lanes
None

2.3.6 Current and proposed width of facility (detail ROW, lanes, shoulders, ped/planter).
36 Feet

2.3.7 Facility surface type.
Asphalt

2.3.8 Describe how project is consistent with local or agency plans.
The proposed 1200 West alignment is part of the Springville City Transportation Master Plan

2.3.9 Describe how project incorporates ITS needs.
Although there is no ITS equipment included with this project, when the future full road is completed Utah County ITS will be incorporated as per the county plan.

2.3.10 If phased or segmented, describe how the phase has logical termini and what will future phases consist of.
The overall MPO plan for this corridor is over 6 miles of road, most of which has not yet been constructed. Some sections already exist, but will require expansion. The proposed section of this project will connect two major roads (1600 S and Canyon Creek Parkway) and provide better access routes to existing development. To minimize costs, only 2 lanes are proposed for construction. The remaining roadway width and trail will be constructed with future development along the corridor. Future phases will complete the corridor to the north through Springville and provide access to south Provo.

2.3.11 Is project being coordinated with or constructed with a larger project?
There are other future phases to this corridor but this project is not being coordinated with another project at this time.

2.3.12 Describe how project will alleviate congestion on this or other facilities.
This new road will allow for more direct travel and remove congestion and high traffic from residential and underdeveloped streets.

2.3.13 Describe any traffic improvements. (i.e lanes, signal coordination, ITS, turn lanes, bus pullouts, etc.)
This project provides a new road with single northbound and southbound lanes.

2.3.14 Describe any safety improvements for vehicular and pedestrian traffic. (i.e. raised median, channelization of turn movements, barriers, parkway strips, etc.)
The full future cross section of the road will be divided by a wide planted median and provide channelized movements for turning traffic. It will also provide bike lanes and a separated multi-use trail.

2.3.15 How are complete streets addressed with this project? (plan for pedestrians, bikes, transit, trails, ITS)
This project will provide 5-foot shoulders to accommodate pedestrian and bike traffic in both directions. The future cross-section includes a trail and sidewalk.

2.3.16 Describe traffic control changes at intersections. (include info to warrant changes)
This project will provide a new road and have a couple of new intersections. There will be no signals or other traffic control measures included at this time.

2.3.17 What right-of-way is already secured?
Springville City has not acquired any ROW at this time. The proposed alignment is primarily located on a single parcel of land (single ownership) and the City has a good relationship with the property owner. ROW acquisition should not be difficult.

2.3.18 What additional right-of-way is needed?
Approx. 102,600 square feet of ROW is required for the road section.

2.3.19 Describe utility work to be performed and indicate who will do the work.
At the 1600 S intersection, utilities will be stubbed acrossed the new asphalt section. In the new 1200 W section widening, SD will be required to collect and convey storm water. Also a 48" pipe culvert will be required at the crossing of an existing irrigation canal. The utility work will be done as part of overall construction by the awarded contractor.

2.3.20 What type of environmental work will most likely be needed?
Environmental Accessment

2.4 Non-Highway Projects (Transit / ITS / Active Transportation, Park and Ride, etc.)

2.4.1 Transit Route #
NA

2.4.2 Length of project
NA

2.4.3 What is the expected use of the facility or program?
NA

2.4.4 What services are provided in the operating of this project?
NA

2.4.5 Describe any equipment to be purchased (buses, ITS, etc.).
NA

2.4.6 Describe how project is consistent with local or agency plans.
NA

2.4.7 Describe how project incorporates ITS needs.
NA

2.4.8 If phased or segmented, describe how the phase has logical termini and what will future phases consist of.
NA

2.4.9 Is project being coordinated with or constructed with a larger project?
2.4.10 Describe how project will alleviate congestion on this or other facilities.

NA

2.4.11 Describe any traffic improvements. (i.e lanes, signal coordination, ITS, turn lanes, bus pullouts, etc.)

NA

2.4.12 Describe any safety improvements for transit and pedestrian traffic. (i.e. raised median, channelization of turn movements, barriers, parkway strips, bridges, etc.)

NA

2.4.13 How are complete streets addressed with this project? (plan for pedestrians, bikes, transit, trails, ITS)

NA

2.4.14 What right-of-way is already secured?

NA

2.4.15 What additional right-of-way is needed?

NA

2.4.16 Describe utility work to be performed and indicate who will do the work.

NA

2.4.17 What type of environmental work will most likely be needed?

Choose an item.

2.5 Facility Design

<table>
<thead>
<tr>
<th></th>
<th>Current Conditions</th>
<th>Design Year 2040</th>
<th>Design Year w/o Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Traffic</td>
<td>NA</td>
<td>14,400</td>
<td>NA</td>
</tr>
<tr>
<td>Level of Service</td>
<td>NA</td>
<td>LOS C or Better</td>
<td>NA</td>
</tr>
<tr>
<td>Functional Class</td>
<td>NA</td>
<td>Major Arterial</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35-40 MPH</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Design Speed</td>
<td>NA</td>
<td>35-40 MPH</td>
<td>NA</td>
</tr>
<tr>
<td>*Accident Rate</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Transit Ridership</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ped/Trail Usage</td>
<td>NA</td>
<td>TBD</td>
<td>NA</td>
</tr>
<tr>
<td>Park and Ride Usage</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
3.0 | Project Ranking
The following categories will be used by MPO staff to score each project. The points associated with each category show what total points MPO staff can give. MPO staff’s recommendations will be made available to the MPO TAC Committee for their use in making final project selection recommendations. MPO staff ranking is a tool to aid the MPO TAC Committee in their final selection. The committee is not required to pick projects solely on MPO staff ranks. Please note, if questions pertinent to the project are not answered, zero points will be given.

3.1 Congestion Relief (25 Points)
Explain if the project...

a) Provides an alternate transportation facility that corrects an identified congested problem?
 This project provides a new north-south road that will allow for more direct travel and remove congestion and high traffic volumes from residential and underdeveloped roads.

b) Reduces congestion by reducing the number of vehicles.
 The new road will allow for additional public transit routes that reach currently-unreached areas that will reduce vehicles from new users.

c) Reduces the need for additional highway lanes for peak hour capacity.
 The project can reduce additional traffic on I-15 and Highway 89 (State St) by providing public transit access to residents along the corridor, removing their dependency on single occupant vehicle use.

d) Increases the efficiency of transportation system through traffic management measures.
 The corridor provides the beginnings of an arterial route for Springville that will result in lesser use of lower functionally classified roads and a more efficient transportation system.

e) Adds turning movements to relieve a congested intersection.
 The project provides a new route to relieve congestion and will add lanes and necessary for intersections but will not provide signals at this time.

3.2 Mode Choice (25 points)
Explain if the project...

a) Benefits multiple transportation systems (transit and highway, pedestrian and transit). The project provides a new transportation route that can be used for pedestrians, bicyclists, and transit.

b) Promotes alternative transportation solution to SOV use.
 The new road will allow for additional public transit routes serving developing areas of Springville.
c) Creates or improves linkages between transportation modes. Eventually 1200 West will interconnect existing trail systems and will include bike lanes. Bus stops can be placed along the corridor as transit and development expand into the project area.

d) Reduces physical, psychological, or economic barriers to carpool, bike, walk, or transit use. The new road will create potential for the public transit. It is the initial phase of a facility that will eventually include bike lanes and a multi-use trail closer to the local residential areas allowing bike and walk transit stops.

e) Provides incentives to carpool, bike, walk, or transit use. The new road will provide a new route closer to the local residential areas for bike, walk, and transit use.

3.3 Environmental Quality (15 points)
Explain if the project...

a) Provides cost effective emission reductions (air quality score). The project provides a main travel corridor that will allow for consistent speeds by reducing deceleration and acceleration caused by congestion. The corridor will also provide better routes that will decrease travel distances.

b) Minimizes environmental impacts or reduces existing impacts (e.g. air/water/noise pollution). The project provides a main travel corridor that will allow for consistent speeds by reducing deceleration and acceleration caused by congestion. The corridor will also provide better routes that will decrease travel distances.

c) Enhances the natural, cultural, or historic environment. The project will provide a straight continuous route that will minimize deceleration and acceleration caused by congestion. The more direct route will reduce travel distance for users, thereby reducing existing impacts to air quality

d) Mitigates invasive impacts to existing neighborhoods/commercial areas (minimal relocations). This project provides a new road that will allow for more direct travel and remove congestion and high traffic volumes from the existing residential areas and underdeveloped roads

3.4 Safety (20 points)
Explain if the project...

a) Corrects/improves a verified or potential safety or accident problem. The new road redirects traffic from existing residential neighborhoods reducing the amount of hurried vehicles traveling at excessive speeds.

b) Improves information/communications for traffic operations and emergency responders. The project will provide a faster and more direct route for all traffic including emergency responders.
c) Reduces severity of crashes.
The new road redirects traffic from existing residential neighborhoods reducing the amount of hurried vehicles traveling at excessive speeds.

d) Enhances safe movement of pedestrian, bicycle traffic.
The current asphalt section will provide shoulders for pedestrian/bike traffic. Eventually the full future road will provide separation of vehicle and pedestrian/bike traffic with large shoulders. The full future cross section will provide a trail offset from the road.

e) Provides an intermodal safety improvement (e.g. separation of vehicles-trains, vehicles-pedestrian).
The full future build out of the road as developer complete it, will provide separation of vehicle and pedestrian/bike traffic with large shoulders. The full future cross section will provide a trail offset from the road.

3.5 Other Considerations (15 points)
Explain if the project...

a) Effectively distributes funding throughout the MPO area.
The project proposes to complete a partial asphalt section to start the travel lanes and shoulders. The full cross section will be completed by future development. This proposal asks for the minimum funds needed to get the corridor started, leaving funding for other projects.

b) Phases project in a manner that the MPO can use limited funds efficiently.
The project has been broken up into phases with the most urgent phase being submitted first. The scope and cost have been reduced from previous proposals so that funding will not need to cover work that could be done by future development.

c) Additional funding above required match is pledged toward project (including any soft match).
Springville City engineering department will provide the design and construction management for the project. The required match will be met through the collection of impact fees.

d) Project sponsor ranking of project.
1

e) Project is numbered project within the current RTP.
This proposed 1200 W - 1600 S to Canyon Creek Parkway project is a segment of the full 1200 West project which is identified as project #34 of the Phase 1 (2024) projects in the MAG Transplan 40, Regional Transportation Plan.
4.0 | Air Quality Report
All projects that are eligible for CM/AQ and CM/AQ-PM2.5 funds must complete this report. These funds are eligible for projects and programs countywide. Contact Susan Hardy at Mountainland AOG if you need help completing 4.4 Quantitative Analysis below, 801/229-3842 or shardy@mountainland.org.

4.1 Eligibility
CM/AQ funds can only be used for projects and programs that a direct benefit to air quality can be demonstrated. Highway expansion, such as new single occupancy vehicle lanes, is not eligible. Turn lanes at congested intersections, transit programs, pedestrian and trail projects, signal modernization, ITS, and IM programs are typical eligible CM/AQ projects.

4.2 CM/AQ Program
The purpose of the CM/AQ program is to fund transportation projects or programs that will contribute to attainment or maintenance of the National Ambient Air Quality Standards (NAAQS) in Ozone (O₃), Carbon monoxide (CO), Particulate Matter – 10 microns (PM₁₀), and PM₂.₅ non-attainment and maintenance areas. The city of Provo is a maintenance area for CO and Utah County is a non-attainment area for PM₁₀ and PM₂.₅.

4.3 Completing this Report
All projects eligible for CM/AQ funds must complete this report. Completing this report can be quite technical, Susan Hardy, Air Quality Coordinator at Mountainland, can help with filling out this report. Contact her at 801/229-3842 or shardy@mountainland.org

4.4 Quantitative Analyses
A quantitative assessment of how a proposed project or program is expected to reduce emissions is important to assist in selecting the most effective use of this fund. List below all travel benefits directly related to this project. Air quality benefit calculations must utilize Mobile 6. The air quality analysis should include assessing emission reductions of transit, traffic flow improvements, ITS projects and programs, ridesharing, bicycle and pedestrian improvements. Complete at least one of the sections below. If quantitative analyses cannot be done, do a qualitative assessment in 4.3.

a) Vehicle Miles Traveled
Number of Vehicle Miles Traveled reduced (VMT): Click here to enter text.
Average distance of trips reduced: Click here to enter text.
Emission reduction per average weekday: Click here to enter text.

b) Idling Time
Average idling time per vehicle reduced: Click here to enter text.
Number of vehicles with reduced idling time: Click here to enter text.
Emission reduction per average weekday: Click here to enter text.

C) Vehicle Speed
Average change in vehicle speed (speed before and after): Click here to enter text.
Number of vehicles affected: Click here to enter text.
Emission reduction per average workday: Click here to enter text.
4.5 Qualitative Assessment
Although a quantitative analyses of air quality impacts is required whenever possible, some improvements may not lend themselves to rigorous quantitative analysis, because of the projects characteristics or because practical experience is lacking to adequately analyze the project. In these cases, a qualitative assessment based on a reason and logical examination of how the project or program will decrease emissions and contribute to attainment or maintenance of a NAAQS is appropriate.
Although this project will help improve traffic movement through this area and provide better routes and possible modes of transportation, it does not qualify for air quality benefits.
5.0 | Project Cost Estimate
To develop a project cost estimate, please supply a detailed cost breakdown of your unit costs, inflation, equipment, right-of-way, contingency, etc. To do so, use the Concept Costs Estimate Excel form provided by UDOT (available on Mountainland.org website). Non-construction projects such as equipment purchases, operations, administration programs, studies, etc. can use other methods to show their estimated costs. All sheets or methods used should be submitted as part of the Supplemental Information accompanying the Concept Report.

5.1 Cost Summary
Summarize the information from the Costs Estimate Excel form or other method. Enter NA for items that do not apply to the project.

a) Preliminary Engineering $107,000 (2018 dollars)
b) Environmental Work $46,925 (2018 dollars)
c) Construction $1,338,000 (2018 dollars)
d) UDOT Review (project cost <$500k = $5k, >500K = $10k) $10,000
e) Construction Engineering $100,000 (2018 dollars)
f) Subtotal (in today’s dollars) $2,033,000
g) Inflated Cost Factor (inflate to 2022) 1.19
h) Total 2022 Cost $2,378,000
i) Non-MPO Funds Available to Project Springville City will be doing the Preliminary and Construction Engineering in-house as the 6.67% match (total $233,000)
j) MPO Funding Request (includes 6.77% local match) $2,378,000

6.0 | Supplemental Information
Please submit any supporting documentation including maps, diagrams, charts, cost estimates, etc. that will allow MPO and UDOT staff and any Technical Advisory Committee to make an informed decision regarding the proposed project. Keep Supplemental Information submittals to 8 pages total.

6.1 Concept Report Submittal
In order to facilitate the distribution of the Concept Reports and any supplemental information, **all Concept Reports shall be combined with any supplemental information and saved in PDF format as one document.** Please note that this might create a large data file that might be too large to emailed. Plan accordingly to submit your report in electronic format (CD, DVD, Flash Drive) by the required due date. **Concept Reports are due by March 29, 2018 at 6pm.**

6.2 Contacts, Questions
For help with the Concept Report or questions, please contact:

Bob Allen
801/229-3813

rallen@mountainland.org
Proposed Project Scope:
Construct approx. 3,125 ft asphalt street section.

<table>
<thead>
<tr>
<th>Approximate Route Reference Mile Post (BEGIN)</th>
<th>NA</th>
<th>(END)</th>
<th>3,125 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Length</td>
<td>0.592 miles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current FY Year (July-June)</td>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assumed Construction FY Year</td>
<td>2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction items inflation factor</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assumed Yearly Inflation for Engineering Services (PE and CE) (%/yr)</td>
<td>3.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assumed Yearly Inflation for Right of Way (%/yr)</td>
<td>3.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Items not Estimated (% of Construction)</td>
<td>20.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Engineering (% of Construction + Incentives)</td>
<td>8.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Engineering (% of Construction + Incentives)</td>
<td>7.5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construction Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Information Services</td>
<td>$2,000</td>
<td></td>
</tr>
<tr>
<td>Roadway and Drainage</td>
<td>$1,063,143</td>
<td></td>
</tr>
<tr>
<td>Traffic and Safety</td>
<td>$2,800</td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Environmental Mitigation</td>
<td>$46,925</td>
<td></td>
</tr>
<tr>
<td>ITS</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$1,114,868</td>
<td></td>
</tr>
<tr>
<td>Items not Estimated</td>
<td>$222,974</td>
<td>20%</td>
</tr>
<tr>
<td>Construction Subtotal</td>
<td>$1,337,842</td>
<td></td>
</tr>
</tbody>
</table>

P.E. Cost

- **P.E. Subtotal:** $107,027
- **C.E. Subtotal:** $100,338

Right of Way

- **Right of Way Subtotal:** $356,580

Utilities

- **Utilities Subtotal:** $0

Incentives

- **Incentives Subtotal:** $0

Miscellaneous

- **Miscellaneous Subtotal:** $0

Cost Estimate (ePM screen 505)

<table>
<thead>
<tr>
<th>Item</th>
<th>2018</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E.</td>
<td>$107,000</td>
<td>$120,000</td>
</tr>
<tr>
<td>Right of Way</td>
<td>$357,000</td>
<td>$401,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Construction</td>
<td>$1,338,000</td>
<td>$1,588,000</td>
</tr>
<tr>
<td>C.E.</td>
<td>$100,000</td>
<td>$113,000</td>
</tr>
<tr>
<td>Incentives</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>0.75%</td>
<td>$10,000</td>
</tr>
<tr>
<td>Change Order Contingency</td>
<td>9.00%</td>
<td>$121,000</td>
</tr>
<tr>
<td>UDOT Oversight</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$2,033,000</td>
<td>$2,378,000</td>
</tr>
</tbody>
</table>

PROPOSED COMMISSION REQUEST

- **TOTAL:** $2,033,000
- **TOTAL:** $2,378,000

Project Assumptions/Risks

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.