1.0 | Project Summary Information

1.1 Project Name (35 letters max) Mapleton Lateral Canal Parkway Trail Phase 3

1.2 Project Type Trail

1.3 Limits (descriptions should be identifiable. i.e: intersections, place names, landmarks, 35 characters max)

The Mapleton Lateral Canal Parkway Trail Phase 3 Project is approximately 11,510 feet long (2.2 miles), and begins at the end of the Mapleton Lateral Canal Parkway Trail Phase 2, and ends at the Spanish Fork Dripping Rock Trail.

1.4 Project Description (summary of project)

The Mapleton Lateral Canal Parkway Trail Phase 3 Project will construct a ten-foot-wide asphalt trail from the end of the newly completed Mapleton Lateral Canal Parkway Trail Phase 2 to the Spanish Fork River Trail network system. It will connect Springville, Mapleton, and Spanish Fork with a continuous trail. The trail will include four pedestrian bridges.

1.5 Sponsor (jurisdiction, agency name) Mapleton City

1.6 Contact Information

 Project Manager Steven Lord
 Office Phone 801-489-6253
 Cell Phone 801-850-8965
 Fax
 Email slord@mapleton.org
1.7 Cost Estimate
 Total Project Cost (include matches, pledged funds, etc.) $3,982,000
 MPO funding request (include any match) $3,982,000
 PE Cost $218,000
 ROW Cost $338,000
 Construction Cost $2,826,000
 Soft Match proposed for project $0

1.8 Project Rank (rank this project compared to your other submittals)
 This project is #1 in the ranking for Mapleton.

1.9 Air Quality Benefit (summarize CM/AQ Report, NA for non-CM/AQ eligible projects)
 Based on the NOx emissions factor of 1.2 Kg/mile, and the VOC emissions factor of 0.6 Kg/mile (Susan Hardy, personal communication January 25, 2018), and the project length of 11,510 feet long (2.2 miles), the total reduction in emissions for this project is 2.64 Kg for NOx and 1.32 Kg for CO.
2.0 | Project Scope
Always enter “NA” rather than leave an answer blank...

2.1 Describe purpose and need of project.
The project will increase connectivity of the Lateral Canal Parkway Trail between Springville, Mapleton, and Spanish Fork. The trail will provide a safe alternative for pedestrians and cyclists away from roads and will improve the connectivity of the existing trail networks.

2.2 Describe existing service/conditions
Currently, the Lateral Canal Parkway Trail is discontinuous and various road alternatives must be used to get around the gaps in the trail network. Trail users must navigate through surface streets, often interacting with motorized vehicles on busy roadways.

2.3 Highway Project Information (for non-highway projects go to 2.4)

2.3.1 State Route # or Federal Aid Route #
NA

2.3.2 Beginning Mile Post
NA

2.3.3 End Mile Post
NA

2.3.4 Length of project
NA

2.3.5 Existing and proposed number of Travel Lanes
NA

2.3.6 Current and proposed width of facility (detail ROW, lanes, shoulders, ped/planter).
NA

2.3.7 Facility surface type.
NA

2.3.8 Describe how project is consistent with local or agency plans.
NA

2.3.9 Describe how project incorporates ITS needs.
NA

2.3.10 If phased or segmented, describe how the phase has logical termini and what will future
phases consist of.
NA

2.3.11 Is project being coordinated with or constructed with a larger project?
NA

2.3.12 Describe how project will alleviate congestion on this or other facilities.
NA

2.3.13 Describe any traffic improvements. (i.e. lanes, signal coordination, ITS, turn lanes, bus pullouts, etc.)
NA

2.3.14 Describe any safety improvements for vehicular and pedestrian traffic. (i.e. raised median, channelization of turn movements, barriers, parkway strips, etc.)
NA

2.3.15 How are complete streets addressed with this project? (plan for pedestrians, bikes, transit, trails, ITS)
NA

2.3.16 Describe traffic control changes at intersections. (include info to warrant changes)
NA

2.3.17 What right-of-way is already secured?
NA

2.3.18 What additional right-of-way is needed?
NA

2.3.19 Describe utility work to be performed and indicate who will do the work.
NA

2.3.20 What type of environmental work will most likely be needed?
NA

2.4 Non-Highway Projects (Transit / ITS / Active Transportation, Park and Ride, etc.)

2.4.1 Transit Route #
NA
2.4.2 Length of project
Approximately 11,510 feet long (2.2 miles)

2.4.3 What is the expected use of the facility or program?
Multi-use trail for pedestrians and bicyclists.

2.4.4 What services are provided in the operating of this project?
A dedicated non-motorized vehicle trail.

2.4.5 Describe any equipment to be purchased (buses, ITS, etc.).
No equipment is needed.

2.4.6 Describe how project is consistent with local or agency plans.
The Mapleton/Spanish Fork Lateral Canal Parkway Trail Project will expand the trail network locally and regionally, and provide an active transportation link from Springville, through Mapleton, to Spanish Fork.

2.4.7 Describe how project incorporates ITS needs.
NA

2.4.8 If phased or segmented, describe how the phase has logical termini and what will future phases consist of.
This is Phase 3 of the Mapleton Lateral Canal Trail Project.

2.4.9 Is project being coordinated with or constructed with a larger project?
Yes, this project is part of the larger Mapleton Lateral Canal Trail system, which starts at Hobble Creek Canyon and ends at the Highline Canal Trail in Spanish Fork, and connects to the greater Spanish Fork River Trail system to the south west.

2.4.10 Describe how project will alleviate congestion on this or other facilities.
The project will provide non-motorized alternative for pedestrians and cyclists.

2.4.11 Describe any traffic improvements. (i.e. lanes, signal coordination, ITS, turn lanes, bus pullouts, etc.)
NA

2.4.12 Describe any safety improvements for transit and pedestrian traffic. (i.e. raised median, channelization of turn movements, barriers, parkway strips, bridges, etc.)
The safety improvements for pedestrians and bicyclists is achieved by providing a dedicated non-motorized vehicle trail that avoids the heavily-used roads, thereby reducing the potential for interaction between cyclist, pedestrians, and vehicles.

2.4.13 How are complete streets addressed with this project? (plan for pedestrians, bikes, transit, trails, ITS)
This project would allow pedestrians and bicyclists an alternative to access the main roadways located to the west of the trail.

2.4.14 What right-of-way is already secured?
Right of way has been secured for the entirety of the project’s length.

2.4.15 What additional right-of-way is needed?
No additional right-of-way is needed.

2.4.16 Describe utility work to be performed and indicate who will do the work.
Utilities will not be affected.

2.4.17 What type of environmental work will most likely be needed?
It is anticipated that this project would need a Categorical Exclusion

2.5 Facility Design

<table>
<thead>
<tr>
<th></th>
<th>Current Conditions</th>
<th>Design Year 2022</th>
<th>Design Year w/o Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Traffic</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Level of Service</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Functional Class</td>
<td>Trail</td>
<td>Trail</td>
<td>Trail</td>
</tr>
<tr>
<td>Design Speed</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>*Accident Rate</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Transit Ridership</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ped/Trail Usage (US-6)</td>
<td>1,000</td>
<td>41,000</td>
<td>1,100</td>
</tr>
<tr>
<td>Park and Ride Usage</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
3.0 | Project Ranking

The following categories will be used by MPO staff to score each project. The points associated with each category show what total points MPO staff can give. MPO staff’s recommendations will be made available to the MPO TAC Committee for their use in making final project selection recommendations. MPO staff ranking is a tool to aid the MPO TAC Committee in their final selection. The committee is not required to pick projects solely on MPO staff ranks. Please note, if questions pertinent to the project are not answered, zero points will be given.

3.1 Congestion Relief (25 Points)
Explain if the project...

a) Provides an alternate transportation facility that corrects an identified congested problem?
The trail improves congestion by siphoning-off pedestrians and bicyclists from the road to the trail.

b) Reduces congestion by reducing the number of vehicles.
This project increases pedestrian use by linking two existing trails systems from Springville through Mapleton to Spanish Fork City giving an alternate route for commuters.

c) Reduces the need for additional highway lanes for peak hour capacity.
Although there is no direct relationship, the trail will conceptually be an alternative for commuters to not drive on highways during peak hour capacity.

d) Increases the efficiency of transportation system through traffic management measures.
The trail system provides alternatives for commuters to use.

e) Adds turning movements to relieve a congested intersection.
NA

3.2 Mode Choice (25 points)
Explain if the project...

a) Benefits multiple transportation systems (transit and highway, pedestrian and transit). The project benefits pedestrian and bicycle transportation system by allowing for an alternative route above Springville, Mapleton, and Spanish Fork.

b) Promotes alternative transportation solution to SOV use.
Yes, because it connects the existing trails, thereby increasing the options to reduce vehicle use.
c) Creates or improves linkages between transportation modes.
 Yes, because it connects the existing trail network in Springville, Mapleton, and Spanish Fork, it increases the options to reduce vehicle use.

d) Reduces physical, psychological, or economic barriers to carpool, bike, walk, or transit use.
 It reduces physical barriers to pedestrian and bicycle use because it provides a dedicated non-motorized vehicle alternative thereby increasing the safety of the users.

e) Provides incentives to carpool, bike, walk, or transit use.
 The incentive to bike and walk on a convenient, dedicated multi-use path is increased as a safe alternative to the road.

3.3 Environmental Quality (15 points)
Explain if the project...

a) Provides cost effective emission reductions (air quality score).
 Based on the NOx emissions factor of 1.2 Kg/mile, and the VOC emissions factor of 0.6 Kg/mile (Susan Hardy, personal communication January 25, 2018), and the project length of 11,510 feet long (2.2 miles), the total reduction in emissions for this project is 2.64 Kg for NOx and 1.32 Kg for CO.

b) Minimizes environmental impacts or reduces existing impacts (e.g. air/water/noise pollution).
 Because it encourages bike and pedestrian travel, the trail reduces environmental impacts to air, water, and noise pollution.

c) Enhances the natural, cultural, or historic environment.
 The creation of the multi-use trail system along enhances the users’ experience and exposure to the natural environment.

d) Mitigates invasive impacts to existing neighborhoods/commercial areas (minimal relocations).
 There are no relocations.

3.4 Safety (20 points)
Explain if the project...

a) Corrects/improves a verified or potential safety or accident problem.
 It corrects or improves the potential safety problem of non-motorized vehicle users’ potential conflict with motorists on the roads.

b) Improves information/communications for traffic operations and emergency responders.
By providing an alternative for commuters, it reduces the numbers of vehicles on major roadways, thereby allowing emergency responders quicker access to locations.

c) Reduces severity of crashes.
Reduces severity of bicycle and pedestrian incidents as trail users will have an alternative to navigating the crowded road.

d) Enhances safe movement of pedestrian, bicycle traffic.
Probably the most significant contribution that this trail extension will make is to provide continued and consistent pedestrian and bicycle traffic away from the roadway.

e) Provides an intermodal safety improvement (e.g. separation of vehicles-trains, vehicles-pedestrian).
The trail will allow users to avoid using surface streets in their travels between Springville, Mapleton, and Spanish Fork.

3.5 Other Considerations (15 points)
Explain if the project...

a) Effectively distributes funding throughout the MPO area.
Yes, this is the only project submitted to MAG from Mapleton.

b) Phases project in a manner that the MPO can use limited funds efficiently.
This is phase 3 of the overall trail project and has been phased appropriately to be economically feasible.

c) Additional funding above required match is pledged toward project (including any soft match).
The require 6.77% match is pledged for this project.

d) Project sponsor ranking of project.
This project is ranked #1 for Mapleton.

e) Project is numbered project within the current RTP.
Yes. Project 122 in the TransPlan40 Statewide Active Transportation Plan for 2015-2024.
4.0 | Air Quality Report
All projects that are eligible for CM/AQ and CM/AQ-PM2.5 funds must complete this report. These funds are eligible for projects and programs countywide. Contact Susan Hardy at Mountainland AOG if you need help completing 4.4 Quantitative Analysis below, 801/229-3842 or shardy@mountainland.org.

4.1 Eligibility
CM/AQ funds can only be used for projects and programs that a direct benefit to air quality can be demonstrated. Highway expansion, such as new single occupancy vehicle lanes, is not eligible. Turn lanes at congested intersections, transit programs, pedestrian and trail projects, signal modernization, ITS, and IM programs are typical eligible CM/AQ projects.

4.2 CM/AQ Program
The purpose of the CM/AQ program is to fund transportation projects or programs that will contribute to attainment or maintenance of the National Ambient Air Quality Standards (NAAQS) in Ozone (O₃), Carbon monoxide (CO), Particulate Matter – 10 microns (PM₁₀), and PM₂.₅ non-attainment and maintenance areas. The city of Provo is a maintenance area for CO and Utah County is a non-attainment area for PM₁₀ and PM₂.₅.

4.3 Completing this Report
All projects eligible for CM/AQ funds must complete this report. Completing this report can be quite technical, Susan Hardy, Air Quality Coordinator at Mountainland, can help with filling out this report. Contact her at 801/229-3842 or shardy@mountainland.org

4.4 Quantitative Analyses
A quantitative assessment of how a proposed project or program is expected to reduce emissions is important to assist in selecting the most effective use of this fund. List below all travel benefits directly related to this project. Air quality benefit calculations must utilize Mobile 6. The air quality analysis should include assessing emission reductions of transit, traffic flow improvements, ITS projects and programs, ridesharing, bicycle and pedestrian improvements. Complete at least one of the sections below. If quantitative analyses cannot be done, do a qualitative assessment in 4.3.

a) Vehicle Miles Traveled
 Number of Vehicle Miles Traveled reduced (VMT): NA
 Average distance of trips reduced: NA
 Emission reduction per average weekday: NA

b) Idling Time
 Average idling time per vehicle reduced: NA
 Number of vehicles with reduced idling time: NA
 Emission reduction per average weekday: NA
C) Vehicle Speed
Average change in vehicle speed (speed before and after): NA
Number of vehicles affected: NA
Emission reduction per average workday: NA

4.5 Qualitative Assessment
Although a quantitative analyses of air quality impacts is required whenever possible, some improvements may not lend themselves to rigorous quantitative analysis, because of the projects characteristics or because practical experience is lacking to adequately analyze the project. In these cases, a qualitative assessment based on a reason and logical examination of how the project or program will decrease emissions and contribute to attainment or maintenance of a NAAQS is appropriate.

Based on the NOx emissions factor of 1.2 Kg/mile, and the VOC emissions factor of 0.6 Kg/mile (Susan Hardy, personal communication January 25, 2018), and the project length of 11,510 feet long (2.2 miles), the total reduction in emissions for this project is 2.64 Kg for NOx and 1.32 Kg for CO.
5.0 | Project Cost Estimate
To develop a project cost estimate, please supply a detailed cost breakdown of your unit costs, inflation, equipment, right-of-way, contingency, etc. To do so, use the Concept Costs Estimate Excel form provided by UDOT (available on Mountainland.org website). Non-construction projects such as equipment purchases, operations, administration programs, studies, etc. can use other methods to show their estimated costs. All sheets or methods used should be submitted as part of the Supplemental Information accompanying the Concept Report.

5.1 Cost Summary
Summarize the information from the Costs Estimate Excel form or other method. Enter NA for items that do not apply to the project.

a) Preliminary Engineering $190,000
b) Environmental Work $50,000
c) Construction $2,381,000
d) UDOT Review (project cost <$500k = $5k, >500K = $10k) $10,000
e) Construction Engineering $238,000
f) Subtotal (in today's dollars) $3,393,000
g) Inflated Cost Factor (inflate to 2022) 1.19%
h) Total 2022 Cost $3,982,000
i) Non-MPO Funds Available to Project $0
j) MPO Funding Request (includes 6.77% local match) $3,982,000

6.0 | Supplemental Information
Please submit any supporting documentation including maps, diagrams, charts, cost estimates, etc. that will allow MPO and UDOT staff and any Technical Advisory Committee to make an informed decision regarding the proposed project. Keep Supplemental Information submittals to 8 pages total.

6.1 Concept Report Submittal
In order to facilitate the distribution of the Concept Reports and any supplemental information, all Concept Reports shall be combined with any supplemental information and saved in PDF format as one document. Please note that this might create a large data file that might be too large to emailed. Plan accordingly to submit your report in electronic format (CD, DVD, Flash Drive) by the required due date. Concept Reports are due by March 29, 2018 at 6pm.
6.2 Contacts, Questions
For help with the Concept Report or questions, please contact:

Bob Allen
801/229-3813
rallen@mountainland.org

Shawn Eliot, AICP
801/229-3841
seliot@mountainland.org
Mapleton - Spanish Fork Trail Connection

Legend
- Existing Trails
- Type A Pedestrian Bridges
- Proposed
- Under Construction
- Proposed Trail
- Trails In Construction
- Railroad Crossing
- Existing Underpass Tunnel
- Railroads
- Mapleton
- Spanish Fork Boundary
- Spanish Fork Poly

End of Existing Spanish Fork Trail
Pedestrian Bridges Under Construction
Proposed Pedestrian Bridges

Proposed Trail
Length: 1.41 Miles

Proposed Trail
Length: 0.74 Miles

End of Existing Mapleton Trail
Existing Underpass Tunnel
Railroad Crossing

Print Date: 2/26/2018

1" = 601 Ft
TYPICAL SECTION FOR LATERAL CANAL TRAIL CONNECTION
Mapleton Lateral Canal Trail

Mapleton, UT
Prepared By: Zachary Scott Date 2/7/2018

Proposed Project Scope:
New Trail Construction on a New Alignment

approximate route reference mile post (begin) = 0.000 (end) = 2.180

project length = 2.180 miles 11,510 ft

current fy year (july-june) = 2018
assumed construction fy year = 2022

construction items inflation factor = 1.19 4 yrs for inflation

assumed yearly inflation for engineering services (pe and ce) (%/yr) = 3.5%
assumed yearly inflation for right of way (%/yr) = 3.0%

items not estimated (% of construction) = 20.0%
preliminary engineering (% of construction + incentives) = 8.0%
construction engineering (% of construction + incentives) = 10.0%

construction items cost remarks

public information services
$1,500

roadway and drainage
$570,075

traffic and safety
$0

structures
$1,074,000

environmental mitigation
$338,661

its
$0

subtotal $1,984,236

items not estimated (20%) $396,847

construction subtotal $2,381,083

p.e. cost
p.e. subtotal $190,487 8%

c.e. cost
"ce" subtotal $238,108 10%

right of way
right of way subtotal $300,000

utilities
utilities subtotal $0

incentives
incentives subtotal $0

miscellaneous
miscellaneous subtotal $0

cost estimate (ePM screen 505)

2018 2022

p.e. $190,000 $218,000

right of way $300,000 $338,000

utilities $0 $0

construction $2,381,000 $2,826,000
"ce" $238,000 $273,000

incentives $0 $0

aesthetics 0.75% $18,000 $21,000

change order contingency 9.00% $216,000 $256,000

UDOT oversight $0 $0

miscellaneous $0 $0

TOTAL $3,343,000 TOTAL $3,932,000

proposed commission request

TOTAL $3,343,000 TOTAL $3,932,000

project assumptions/risks

1 8

2 9

3 10

4 11

5 12

6 13

7 14
<table>
<thead>
<tr>
<th>Item #</th>
<th>Item</th>
<th>Quantity</th>
<th>Units</th>
<th>Price</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>015017010</td>
<td>Mobilization</td>
<td>1</td>
<td>lump</td>
<td>$40,000.00</td>
<td>$40,000.00</td>
<td>Usually 7-10% of construction</td>
</tr>
<tr>
<td>015547005</td>
<td>Traffic Control</td>
<td>1</td>
<td>lump</td>
<td>$10,000.00</td>
<td>$10,000.00</td>
<td>Usually 3-5% of construction</td>
</tr>
<tr>
<td>01557001*</td>
<td>Maintenance of Traffic</td>
<td>1</td>
<td>lump</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
<td>Usually 1% of construction</td>
</tr>
<tr>
<td>015727020</td>
<td>Dust Control and Watering</td>
<td>10</td>
<td>1000 gallon</td>
<td>$500.00</td>
<td>$5,000.00</td>
<td></td>
</tr>
<tr>
<td>022317010</td>
<td>Clearing and Grubbing</td>
<td>1</td>
<td>lump</td>
<td>$50,000.00</td>
<td>$50,000.00</td>
<td></td>
</tr>
<tr>
<td>023167020</td>
<td>Roadway Excavation (Plan Quantity)</td>
<td>8,554</td>
<td>cubic yard</td>
<td>$15.00</td>
<td>$128,310.00</td>
<td></td>
</tr>
<tr>
<td>027217010</td>
<td>Untreated Base Course</td>
<td>6,915</td>
<td>ton</td>
<td>$15.00</td>
<td>$103,725.00</td>
<td></td>
</tr>
<tr>
<td>027417050</td>
<td>HMA - 1/2 Inch</td>
<td>2,138</td>
<td>ton</td>
<td>$80.00</td>
<td>$171,040.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roadway Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$510,075</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td>1</td>
<td>lump</td>
<td>$60,000.00</td>
<td>$60,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drainage Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$60,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015407010</td>
<td>Public Information Services</td>
<td>1</td>
<td>lump</td>
<td>$1,500.00</td>
<td>$1,500.00</td>
<td>Usually 0.25% of construction</td>
</tr>
</tbody>
</table>

Roadway and Drainage

PIN: PROJECT # PROJECT NAME: Mapleton Canal Parkway Trail
Structures

PIN: PROJECT # **PROJECT NAME:** Mapleton Canal Parkway Trail

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item</th>
<th>Quantity</th>
<th>Units</th>
<th>Price</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedestrian Bridge (24’ x 14’)</td>
<td>3</td>
<td>Lump</td>
<td>$150,000.00</td>
<td>$450,000.00</td>
<td>Prefabricated Truss Bridge</td>
</tr>
<tr>
<td>Walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retaining Wall</td>
<td>600</td>
<td>sq ft</td>
<td>$15.00</td>
<td>$9,000.00</td>
<td>Assumed LxH (wall area)</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedestrian Underpass (130’ x 14’ x 12’ Concrete)</td>
<td>1</td>
<td>Lump</td>
<td>$600,000.00</td>
<td>$600,000.00</td>
<td></td>
</tr>
<tr>
<td>Geotech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geotech Report</td>
<td>1</td>
<td>Lump</td>
<td>$15,000.00</td>
<td>$15,000.00</td>
<td></td>
</tr>
<tr>
<td>Structures Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,074,000</td>
</tr>
</tbody>
</table>
Environmental and Landscaping

PIN: PROJECT #: PROJECT NAME: Mapleton Canal Parkway Trail

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item</th>
<th>Quantity</th>
<th>Units</th>
<th>Price</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Erosion Control</td>
<td>Silt Fence</td>
<td>23,096</td>
<td>foot</td>
<td>$2.00</td>
<td>$46,192.00</td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>Strip, Stockpile, and Spread Topsoil (Plan Quantity)</td>
<td>38,493</td>
<td>square yard</td>
<td>$4.50</td>
<td>$173,218.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broadcast Seed</td>
<td>8</td>
<td>acre</td>
<td>$15,000.00</td>
<td>$119,250.00</td>
<td></td>
</tr>
<tr>
<td>Environmental Mitigation Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$338,661</td>
<td></td>
</tr>
</tbody>
</table>
Utilities, Right of Way, and Incentives

PIN: PROJECT # PROJECT NAME: Mapleton Canal Parkway Trail

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item</th>
<th>Quantity</th>
<th>Units</th>
<th>Price</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilities Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right-of-way</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suburban Non-Residential</td>
<td>60,000</td>
<td>sq ft</td>
<td>$5.00</td>
<td>$300,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right-of-Way Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$300,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incentives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incentives Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>